Using Blast Furnace Slag to Remove Ortho Phosphorus From Stormwater

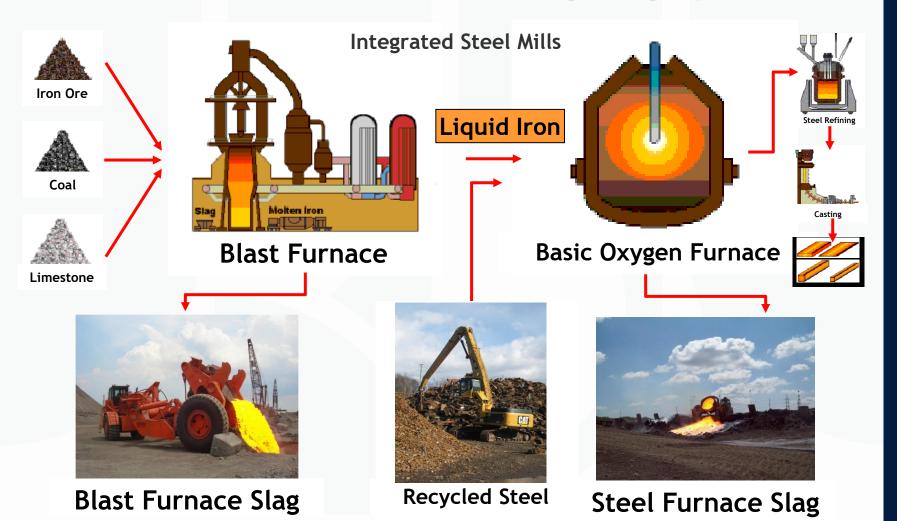
WaterJAM 2022

Todd B. Weik, PLA, CPESC toddweik@cbceng.com 262-219-2938

Phosphorus is a Real Problem

Tools to Reduce Phosphorus

- P Absorption Materials Meta Materia, Bold-Gold, ACBS
- Watershed Adaptive Management Plans
- Wet Ponds and Wetlands
- Lear Litter Pick-Up Programs
- Wastewater Treatment Upgrades
- Education



What kinds of slag exist in US?

- All slags generated from high temperature (metals processing) industries
- Iron- and Steel-Making Slags (BF, BOF, EAF, Ladle, Stainless)
 - Highly controlled material by virtue of steel making process.
 - · High environmental quality. Granular, but reactive
 - After iron recovery, BF/BOF/EAF slags is crushed and screened to make aggregates.
- Copper & Lead Smelting Slags
 - Typically associated with Superfund & RCRA sites (Raritan Bay, NJ, others)
- Chromium Slags (aka: Chromite Ore Processing Residue; COPR)
 - Typically associated with Superfund & RCRA sites (New Jersey, Baltimore)
- Foundry Slags
- Power Generation Slags
 - Incinerator and Bottom Ashes & Slags
- Scoria & Volcanic Materials
 - Found in cool places (Hawaii) and great wine destinations (Italy, Greece, Napa)

How are iron-and steel-making slags produced?

Unprocessed slag

Regulatory Oversight

- May 8, 2017 Conditional grant of exemption from licensing for use of BFS as granular fill in pavement subgrade and stormwater control systems (NR528)
- April 17, 2018 Act 285: Iron and steel process slag is exempted from the definition of "solid waste."

BF Slag Geochemistry by XRF & QXRD

XRF Chemic	cal Analysis		Nor	malized 🛭 em	ental Composiți	ion	
		Total S	Sample	Amorpho	us Fraction	Crystallir	ne Fraction
Element	Wt%	Element	Wt%	Wt%	Distribution	Wt%	Distribution
Ca	26.42	Ca	45.2%	33.6%	17.5%	48.7%	82.5%
Si	17.68	Si	30.2%	24.0%	18.6%	32.1%	81.4%
Mg	6.36	Mg	10.9%	5.5%	12.0%	12.5%	88.0%
Al	4.64	Al	7.9%	16.0%	47.2%	5.5%	52.8%
S	1.32	S	2.3%	6.9%	72.0%	0.8%	28.0%
K	0.51	K	0.9%	3.7%	100.0%	0.0%	0.0%
Fe	0.44	Fe	0.8%	2.0%	60.7%	0.4%	39.3%
С	0.32	С	0.5%	2.3%	100.0%	0.0%	0.0%
Ti	0.29	Ti	0.5%	2.1%	100.0%	0.0%	0.0%
Mn	0.27	Mn	0.5%	1.9%	100.0%	0.0%	0.0%
Na	0.22	Na	0.4%	1.6%	100.0%	0.0%	0.0%
Cr	0.02	Cr	0.0%	0.2%	100.0%	0.0%	0.0%
Р	0.01	Р	0.0%	0.1%	100.0%	0.0%	0.0%
Total	58.50	Total	100.0%	100.0%		100.0%	

Quantitative	X-Ray Diffraction Analysis		Majo	r Oxides	
Comp	ounds		Oxide	Oxide Wt.%	
Mineral Name	Formula	Wt%	CaO	37.0	
Amorphous Material		24.4	SiO2	37.8	
Akermanite	Ca2MgSi2O7	57.3	Al2O3	8.8	
Gehlenite	Ca2Al2SiO7	11.6	Fe2O3	0.6	
Diopside	CaMgSi2O6	4.2	MgO	10.5	
Epidote	Ca2FeAl2Si3O12(OH)	1.5	LOI	0.0	
Oldhamite	CaS	0.8	Sum	94.7	
Merwinite	Ca3Mg(SiO4)2	0.2			
Total		100.0			

WDNR Testing Suite - DIW Leach

		NR 538, V	VI Admin Code	, Appendix 1			
	Category 1	Category 2&3	Category 4	Replicate 1	L	Replicate :	2
Water Leach Test (ASTM D3987)					•		
Parameter	mg/l	mg/l	mg/l	mg/l		mg/l	\Box
Aluminum	1.5		-	1.58		1.54	
Antimony	0.0012	0.012	-	0.005	U	0.005	U
Arsenic	0.005	0.05		0.01	U	0.01	U
Barium	0.4	4		0.21		0.23	\Box
Beryllium	0.0004	0.004	-	0.0005	U	0.0005	U
Cadmium	0.0005	0.005	0.025	0.0005	U	0.0005	U
Chromium, Tot	0.01	0.1		0.001	U	0.001	U
Copper	0.13			0.0025	U	0.0025	U
Total Cyanide	0.04			0.0015	U	0.0015	U
Fluoride	0.8			0.39		0.39	\Box
Iron	0.15	1.5	3	0.01	U	0.01	U
Lead	0.0015	0.015	0.075	0.01	U	0.01	U
Manganese	0.025	0.25		0.0018	J	0.0018	J
Mercury	0.0002	0.0002	0.01	0.0001	U	0.0001	U
Nickel	0.02			0.0025	U	0.0025	U
Selenium	0.01	0.1		0.02	U	0.02	U
Sulfate	125			18.4		21	Ε
Thallium	0.0004			0.048		0.017	J
Zinc	2.5			0.006	J	0.007	J

Exceeds Category 1, but satisfies all other categories

[&]quot;U" flagged; The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

[&]quot;J" flagged; the analyte was positively identified. The associated numerical value is an estimated quantity.

WDNR aquifer criteria & SPLP leaching of soil like media

Metal	WI Ground Water Quality Standard. ¹	Blast Furnace Slag	Top Soil	Potting Soil 2	Wood Mulch 2	Bentonite	Kaolinite	Limestone	RCA	MV
Units	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Aluminum (Al)	0.200	3.72	11.70	7.93	0.279	109	11.0	0.182	0.71	0.389
Antimony (Sb)	0.006	0.0069	< 0.0345	< 0.0345	< 0.0345	< 0.0345	< 0.0345	< 0.0345	< 0.0345	< 0.0345
Arsenic (As)	0.010	< 0.010	< 0.0632	< 0.0632	< 0.0632	< 0.0632	< 0.0632	< 0.0632	< 0.0632	< 0.0632
Barium (Ba)	2.00	0.173	0.0869	0.0834	0.0347	0.467	0.0662	0.0192	0.218	< 0.001
Beryllium (Be)	0.004	0.0005	0.0013	< 0.00106	<0.00106	0.00399	0.00148	< 0.00106	< 0.00106	< 0.00106
Cadmium (Cd)	0.005	<0.0005	< 0.00169	< 0.00169	<0.00169	< 0.00169	< 0.00169	<0.00169	< 0.00169	0.00201
Chromium (Cr tot)	0.100	0.0064	0.0141	0.0148	<0.00727	< 0.00727	0.0141	< 0.00727	0.0362	0.641
Copper (Cu)	1.30	0.0257	0.0304	0.0479	0.0164	0.0279	< 0.0119	< 0.0119	0.0251	16.2
Iron (Fe)	0.300	0.279	10.40	4.26	0.327	37.0	1.96	<0.08	< 0.08	61.8
Lead (Pb)	0.015	< 0.010	< 0.0136	< 0.0136	< 0.0136	0.0368	< 0.0136	< 0.0136	< 0.0136	< 0.0136
Manganese (Mn)	0.300	0.303	0.0857	0.0602	0.0277	0.19	0.017	< 0.00732	< 0.00732	10.9
Mercury (Hg)	0.002		< 0.00015	< 0.00015	<0.00015	< 0.00015	0.00026	<0.00015	< 0.00015	< 0.00015
Nickel (Ni)	0.100	< 0.0025	0.0146	< 0.0123	< 0.0123	< 0.0123	< 0.0123	< 0.0123	< 0.0123	0.241
Selenium (Se)	0.050	< 0.0200	< 0.105	< 0.105	< 0.105	< 0.105	< 0.105	< 0.105	< 0.105	2.69
Silver (Ag)	0.050	< 0.0013	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013
Thallium (Tl)	0.002	< 0.0041	< 0.0339	< 0.0339	0.0384	< 0.0339	< 0.0339	< 0.0339	< 0.0339	< 0.0339
Tin (Sn)	NR		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.0445
Vanadium (V)	0.030	0.0198	0.0191	<0.00888	<0.00888	0.0124	0.0729	<0.00888	<0.00888	0.0168
Zinc (Zn)	5.00	0.0516	0.0592	0.072	0.0971	0.151	< 0.0278	< 0.0278	< 0.0278	13.0

Notes:

WI = Wisconsin

 $SPLP:=Synthetic\ Precipitation\ Leaching\ Procedure$

"<" represents analytical results not detected at detection limit. Equivalent to "U" in lab report.

NR = Not regulated; -- = Not tested.

Color coding: Yellow: = SPLP concentrations above Wisconsin Groundwater Standards.

RCA = SHA Recycled Concrete Aggregate

MV = Multivitamin

ENGINEERING

Ecotoxicity Testing Results

Summary of A	le 1 otox_67 Acute Results ubia
Sample Concentration (%)	Percent Survival (at Test Termination)
Control	100
6.25	80
12.5	95
25.0	90
50.0	100
100	95

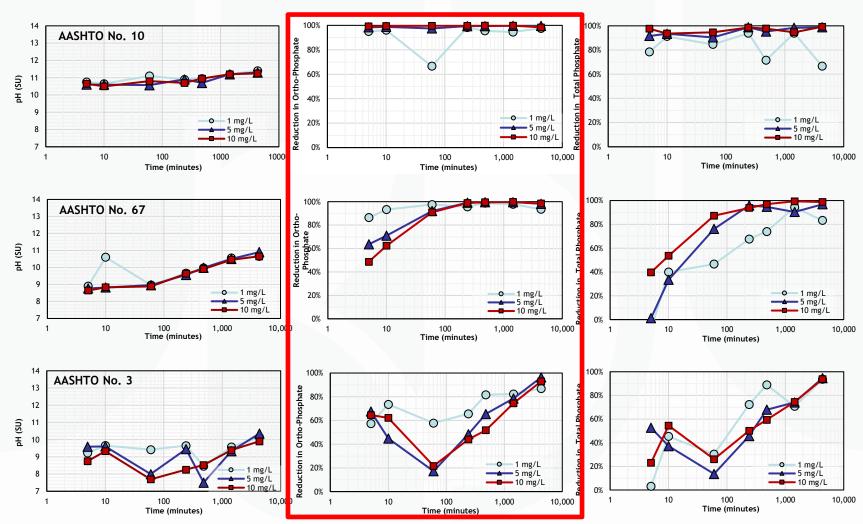
Tab	le 2	
PHx_Ec	otox_67	
Summary of A	Acute Results	
P. pro	melas	
Sample Concentration (%)	Percent Su (at Test Term	
Control	100	
6.25	100	
12.5	100	
25.0	100	
50.0	97.5	
100	100	

- ACBF slag leachate on second flush (first flush removes fines)
- C. Dubia (water fleas) test duration 48 hours
 - Initial pH in 100% ACBF slag was 8.8, dropped to 7.5 by end of test
- P. Promelas (fathead minnows) test duration 96 hours
 - Initial pH in 100% ACBF slag was 8.8, dropped to 7.1 by end of test
- Both tests pass min. 90% survival rate

BF Slag PO4 Batch Immobilization Experiments

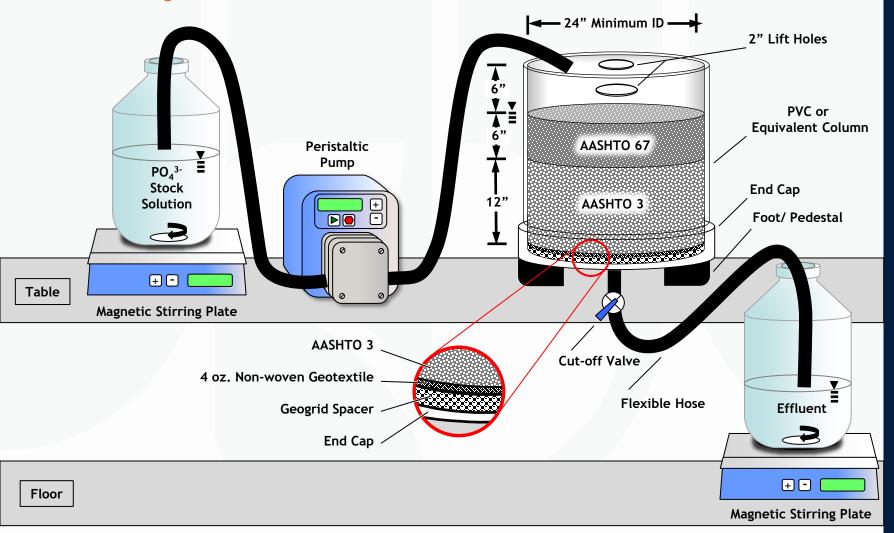
Motivation

 Bracket PO4 uptake kinetics of BF slag based on expected PAVEDRAIN system residence times and anticipated PO4 levels.

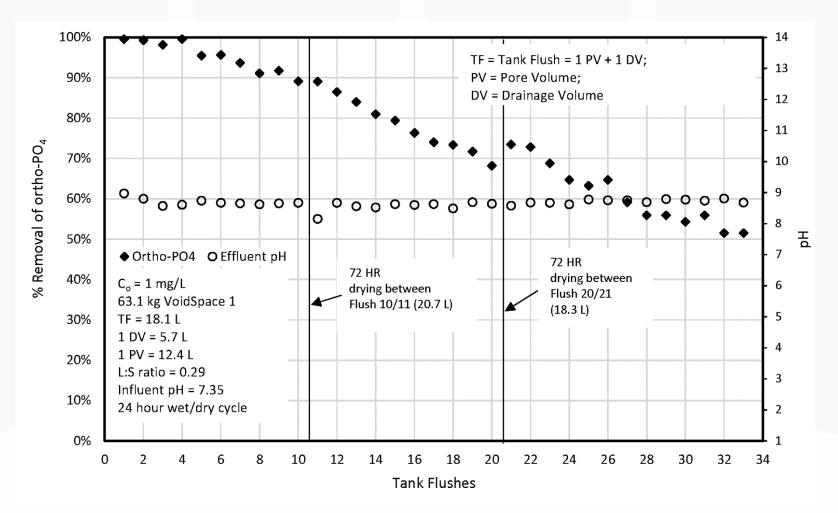

Testing Program

- <3/8-inch; AASHTO 67, AASHTO 3 sizes</p>
- PO4 stock solutions: 1, 5, 10 mg/L
- Contact times: 5, 10 min; 1, 4, 8, 24 and 72 hours
- L:S ratio 1:1 (in-situ ratio)
- <3/8 minus & AASHTO 67 on ZHE TCLP tumbler</p>
- AASHTO 3 on Orbital shaker at 30 RPM

Post-Extraction Test Eluate pH (left), ortho- (center) and total (right) Phosphate Concentration Reductions for AASHTO No. 10 (top), No. 67 (middle), and No. 3 (bottom) ACBF Slag (LS=1)



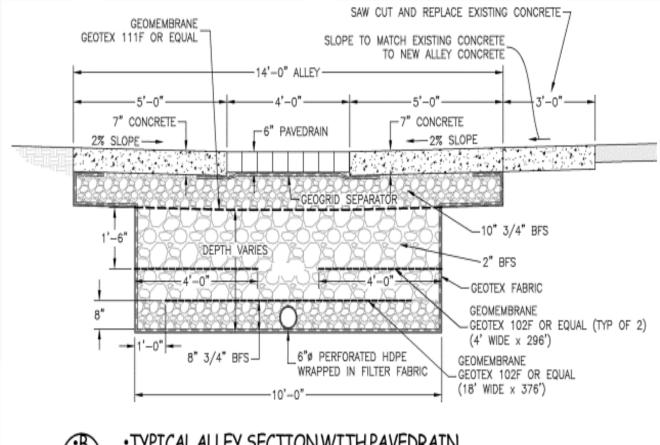
Design Considerations



Capacity Test Results (%Removal PO4)

WinSLAMM Analysis

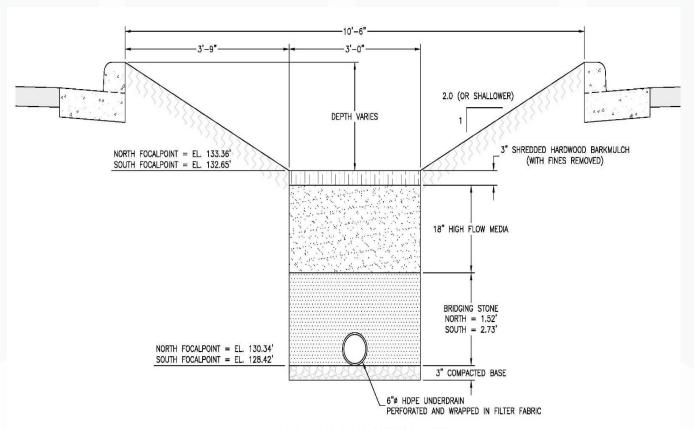
- Evaluated three specific land use conditions for five Great Lakes cities
- Local rainfall files used for annual pollutant loads and runoff volume
- Focused on total and ortho-phosphorus



Estimated Design Life of ACBF Slag Media

		Life Cyc	cle (yrs)		
Location/LU	BFS Storage Gallery = 10% of watershed	BFS Storage Gallery = 20% of watershed	BFS Storage Gallery = 30% of watershed	BFS Storage Gallery = 35% of watershed	BFS Storage Gallery =5% of watershed
Buffalo / HD Residential	15.9	33.8	50.8	59.2	8.38
Buffalo / LD Residential	15.9	33.8	50.7	59.1	8.36
Buffalo / Industrial	25.8	54.9	82.4	96.1	13.60
Chicago/ HD Residential	9.1	19.3	29.0	33.8	4.78
Chicago / LD Residential Chicago / Industrial	9.3 17.7	19.9 37.6	29.3 56.4	34.1 65.8	4.93 9.31
Duluth / HD Residential Duluth / LD Residential	10.9	23.2	34.8 35.8	40.6 41.7	5.75 5.91
Duluth / Industrial	21.0	44.8	67.2	78.4	11.09
Erie / HD Residential	8.5	18.1	27.2	31.7	4.48
Erie / LD Residential Erie / Industrial	8.5 17.7	18.1 37.8	27.2 56.7	31.7 66.1	4.48 9.35
Green Bay / HD Residential	13.2	28.1	42.2	49.2	6.97
Green Bay / LD Residential	13.1	28.0	42.0	49.0	6.93
Green Bay/ Industrial	21.7	46.1	69.2	80.7	11.42

Cudahy - Green Alley



•TYPICAL ALLEY SECTION WITH PAVEDRAIN

Cudahy - Squires Ave Parking Lot

TYPICAL SECTION - FOCALPOINT

NO SCALE

Cudahy Project

Pre-Construction Sampling	Ortho P (mg/L)	Total P (mg/L)	TSS (mg/L)	Chloride (mg/l)	Lead (ug/l)	Nitrate (mg/l)	Ph
August 8th, 2018	-	0.02	26	0.00	0.00	0.16	7.69
August 20th, 2018	0.036	0.11	190	7.80	9.20	0.59	9.41
Post Construction Sampling	Ortho P (mg/L)	Total P (mg/L)	TSS (mg/L)	Chloride (mg/l)	Lead (ug/l)	Nitrate (mg/l)	Ph
November 5, 2018	0.000	0.011	52	0.00	0.00	0.26	7.47

	Squir	e Avenue Parking	g Lot and Gree	en Alley			
Pretreatment Sample	Ortho P (mg/L)	Total P (mg/L)	TSS (mg/L)	Chloride (mg/l)	Lead (ug/l)	Nitrate (mg/l)	Ph
June 6, 2020	0.14	0.74	150	11.00	ND	1.70	6.21
August 2, 2020	ND	0.67	130	8.30	16.00	1.10	6.43
Post Treatment Sample	Ortho P (mg/L)	Total P (mg/L)	TSS (mg/L)	Chloride (mg/l)	Lead (ug/l)	Nitrate (mg/l)	Ph
Post Treatment Sample June 6, 2020		Total P (mg/L) 0.081	TSS (mg/L)		Lead (ug/l) ND		Ph 6.55

Summary

BF Slag Characterization

- BF slag is not toxic to the environment.
- Few metals detected, even less leachable.
- Well suited for PO4 immobilization applications
- Long term leaching as base/subbase negligible from environmental perspective.

PO4 Uptake

- BF slag removes substantial PO4 concentrations in short timeframes
- 3/8"-minus removes 99% ortho PO4 in 5 min for PO4 = 1 mg/L
- AASHTO 67 removes 86% ortho PO4 in 5 min for PO4 = 1 mg/L
- AASHTO 3 removes 57% ortho PO4 in 5 min for PO4 = 1 mg/L

Sustainability

- BF slag is 100% recycled material.
- BF slag does not need to be landfilled.
- Buk dry unit weight is more than 10 lb/ft3 less than limestone.

ENGINEERING • ENVIRONMENTAL • GEOTECHNICAL • SURVEYING

Contact Information

Todd Weik, PLA, CPESC 262.219.2938 cell toddweik@cbceng.com